Objectives

A fter completing this chapter. you should be able to

Find the confidance intarval for the mean
when o is known.

Deataermins the minimum sample sizs for
finding a confidance intarval for the msan.

Find the confidance interval for the maan
whean «r is unknown.

Find the confidance intarval for a proportion.

Deateermins the minimum sample sizs for
finding a confidance intarval for a proportion.

Find a confidance intarval for a variance and a
standard deviation.

Confidence Intervals
and Sample Size

Introduction

Confidence Intervals for the Mean When
or Is Known and Sample Size

Confidence Intervals for the Mean When
or Is Unknown

Confidence Intervals and Sample Size for
Proportions

Confidence Intervals for Variances
and Standard Deviations

Summary
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Preview

This chapter presents the beginning of inferential
statistics.

m The two major activities of inferential statistics
are (1) to use sample data to estimate values of
a population parameters, and(ch7). (2) to test
hypotheses or claims made about population
parameters(ch8).

m We introduce methods for estimating values of
these important population parameters: means,
proportions and variances.

m We also present methods for determining
sample sizes necessary to estimate those
parameters.
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7.1 Confidence Intervals for the
Mean When o Is Known and
Sample Size

m A point estimate Is a specific
numerical value estimate of a
parameter.

m The best point estimate of the
population mean [ Is the
Sample mean )Z (unbiased estimator, not MD and mode)
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" S
Three Properties of a Good
Estimator

1. The estimator should be an
unbiased estimator. That is,
the expected value or the mean
of the estimates obtained from
samples of a given size Is
eqgual to the parameter being
estimated.
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" S
Three Properties of a Good
Estimator

2. The estimator should be
consistent. For a consistent
estimator, as sample size
Increases, the value of the
estimator approaches the value
of the parameter estimated.
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" S
Three Properties of a Good
Estimator

3. The estimator should be a
relatively efficient estimator:;
that Is, of all the statistics that
can be used to estimate a
parameter, the relatively
efficient estimator has the
smallest variance.
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Confidence Intervals for the Mean
When o Is Known and Sample Size

m An interval estimate of a
parameter Is an interval or a range
of values used to estimate the
parameter.

m This estimate may or may not
contain the value of the parameter

being estimated.
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" I
Confidence Level of an Interval
Estimate

m The confidence level of an interval
estimate of a parameter Is the probability
that the interval estimate will contain the
parameter, assuming that a large
number of samples are selected and that
the estimation process on the same
parameter Is repeated.
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Confidence Interval

m A confidence interval is a specific
Interval estimate of a parameter
determined by using data obtained
from a sample and by using the
specific confidence level of the
estimate.
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Formula for the Confidence Interval of
the Mean for a Specific o

X_Za/Z[J‘-Hj<ﬂ< >z+za/2(\/o-ﬁj

X . point estimate of p

o
E = Zai2 (ﬁj . Maximum (marginal) error of estimate

z,,»- Critical value (C.V.), a z score can to distinguish between
sample statistics that are likely to occur and those that are
unlikely to occur from table E. a=1-95% C.L.

| 1,-;] : S.E.

For a 90% confidence interval: z_,, =1.65

(i

For a 95% confidence interval: Z,,, =1.96
For a 99% confidence interval: Z_,, =2.58

Bluman, Chapter 7, 08/2011
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05% Confidence Interval of the
Mean

a a
Z —_— Z e
a2 (\.’n) a2 (\:In)

— _ Z=+1.96
£=-1.96 Distribution of X’s
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Comulative Stamdard Mormal Distreibotion
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Comulative Stamdard MNoroal Distei bokion
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" I
Maximum Error of the Estimate

The maximum error of the estimate Is the
maximum likely difference between the point
estimate of a parameter and the actual value
of the parameter.

()
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" I
Confidence Interval for a Mean

Rounding Rule

When you are computing a confidence interval for
a population mean by using raw data, round off to
one more decimal place than the number of
decimal places in the original data.

When you are computing a confidence interval for
a population mean by using a sample mean and a
standard deviation, round off to the same number
of decimal places as given for the mean.

Bluman, Chapter 7, 08/2011 15
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-1

Example 7-1
Page #360
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" S
Example 7-1: Days to Sell an Aveo

A researcher wishes to estimate the number of days it
takes an automobile dealer to sell a Chevrolet Aveo. A
sample of 50 cars had a mean time on the dealer’s lot of
54 days. Assume the population standard deviation to
be 6.0 days. Find the best point estimate of the

population mean and the 95% confidence interval of the
population mean.

The best point estimate of the mean is 54 days.

X =54,0=6.0,n=50,95% —> z=1.96

— O — O
X—Za/z(%j<ﬂ<x+za/2(%j
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" S
Example 7-1: Days to Sell an Aveo

X =54,0=6.0,n=50,95% —> z=1.96

— O — O
X—Za/z(ﬁj<ﬂ<x+za/2(ﬁj
6.0 6.0

54 -196| — |< u<b54+1.96| —
(Jsoj “ (Jsoj

54-1.7< u<54+1.7
52.3< 1 <55.7
52 < 11 <56

One can say with 95% confidence that the interval
between 52 and 56 days contains the population mean,
based on a sample of 50 automobiles.

Bluman, Chapter 7, 08/2011 18
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-1

Example 7-2
Page #360
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Example 7-2: Ages of Automobiles

A survey of 30 adults found that the mean age of a
person’s primary vehicle is 5.6 years. Assuming the
standard deviation of the population is 0.8 year, find
the best point estimate of the population mean and the
99% confidence interval of the population mean.

The best point estimate of the mean is 5.6 years.
56— 2.58[£] < <356 +2.58[£]

N30 N30

5.2< 1 <6.0

One can be 99% confident that the mean age of all
primary vehicles is between 5.2 and 6.0 years, based on a
sample of 30 vehicles.

Bluman, Chapter 7, 08/2011 20
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05% Confidence Interval of the

Mean

u+ 1.96(ﬁ}

w— 196

)

Each e represents an X.

Bluman, Chapter 7, 08/2011
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" I
05% Confidence Interval of the
Mean T

T One can be

1 95% confident
that an interval
built around a

! 3 specific sample
! ! mean would

{ d contain the
population

-+ -+ mean.

Each I represents an interval about a sample mean.

Bluman, Chapter 7, 08/2011
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F|nd|ng Za/Z fOr 98% CL (option)

a = 0.02

5= 0.01 =[.01
( N
——t —e
_zm'E D zrx."E
Table E
The Standard Normal Distribution
Z a0 1) 02 03 09
DD -~
0.1

23 = { 09901 )
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Technology Note (option)

This chapter and subsequent chapters include examples
using raw data. If you are using computer or calculator
programs to find the solutions, the answers you get may
vary somewhat from the ones given in the textbook.

This is so because computers and calculators do not
round the answers in the intermediate steps and can use
12 or more decimal places for computation. Also, they
use more exact values than those given in the tables in
the back of this book.

These discrepancies are part and parcel of statistics.

Bluman, Chapter 7, 08/2011 24



Formula for Minimum Sample Size
Needed for an Interval Estimate of the
Population Mean

. . 2
E:zgﬂ(ij S T B
/2 \/; =

where E is the maximum error of estimate. If necessary,
round the answer up to obtain a whole number. That is, if
there is any fraction or decimal portion in the answer, use
the next whole number for sample size n.
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-1

Example 7-4
Page #364
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" J
Example 7-4: Depth of a River

A scientist wishes to estimate the average depth of a river.
He wants to be 99% confident that the estimate is
accurate within 2 feet. From a previous study, the
standard deviation of the depths measured was 4.38 feet.

9% —>z=258E=2,06=4.38

2 2
Z .G °
n:( o2 J :(2.5824.38j Catop

E

Therefore, to be 99% confident that the estimate is within
2 feet of the true mean depth, the scientist needs at least
a sample of 32 measurements.
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7.2 Confidence Intervals for the Mean
When o Is Unknown

The value of o, when it is not known, must be estimated
by using s, the standard deviation of the sample.

When s is used, especially when the sample size is small
(less than 30), critical values greater than the values for
Z,, are used in confidence intervals in order to keep the
Interval at a given level, such as the 95%.

These values are taken from the Student t distribution,
most often called the t distribution.
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" I
Characteristics of the t Distribution

The t distribution is similar to the standard
normal distribution in these ways:

1. It is bell-shaped.

2. It 1Is symmetric about the mean.

3. The mean, median, and mode are equal to
O and are located at the center of the
distribution.

4. The curve never touches the x axis.
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" I
Characteristics of the t Distribution

The t distribution differs from the standard
normal distribution in the following ways:

1. The variance Is greater than 1.

2. The t distribution Is actually a family of
curves based on the concept of degrees of
freedom, which is related to sample size.

3. As the sample size increases, the t

distribution approaches the standard
normal distribution.
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" S
Degrees of Freedom

m The symbol d.f. will be used for degrees of
freedom.
m The degrees of freedom for a confidence

Interval for the mean are found by subtracting
1 from the sample size. That is, d.f. = n - 1.

m Note: For some statistical tests used later In
this book, the degrees of freedom are not
equalton - 1.
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Formula for a Specific Confidence
Interval for the Mean When o Is
Unknown

_ S — S
X _ta/Z (%j < lLl < X +ta/2 (ﬁj

The degrees of freedom are n - 1.

Bluman, Chapter 7, 08/2011
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-2

Example 7-5
Page #371
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Example 7-5: Using Table F

Find the t ,, value for a 95% confidence interval when the
sample size is 22.

Degrees of freedom are d.f. = 21.

Table F
The f Distribution
confdence 50% 80% 90% 98% 99%
| ]
4 |Onetaila 0.25 0.10 0.05 0025 0.01 0.005
1. i
Two tails a 0.50 0.20 0.10 0.05 0.02 0.01
.1
9
7
: ¥
@ (2080 )| 2518 2,831
(2)o0 0.674 1.282° 1.645° 1.960 2.326° 9.576"

Bluman, Chapter 7, 08/2011
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-2

Example 7-6
Page #3/72
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" J
Example 7-6: Sleeping Time

Ten randomly selected people were asked how long they
slept at night. The mean time was 7.1 hours, and the
standard deviation was 0.78 hour. Find the 95%
confidence interval of the mean time. Assume the variable
IS normally distributed.

Since ois unknown and s must replace it, the t distribution
(Table F) must be used for the confidence interval. Hence,
with 9 degrees of freedom, t ,, = 2.262.

_ S — S
X _ta/2 (%j < lLl < X +ta/2 (ﬁj

7.1-2.262 (%j < 1 <7.1+2.262 (@j
J10 J10

Bluman, Chapter 7, 08/2011 36



" JEE
B teodbtin

Confidence
intervals B0 T W57 0T L
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" J
Example 7-6: Sleeping Time

7.1-2.262 (@j < u<7.1+2.262 (@j
J10 J10

7.1-0.56 < 1< 7.1+0.56
6.5<u<’.7

One can be 95% confident that the population mean is
between 6.5 and 7.7 hours.

Bluman, Chapter 7, 08/2011
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-2

Example 7-7
Page #3/72
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" J
Example 7-7: Home Fires by Candles
The data represent a sample of the number of home fires
started by candles for the past several years. Find the

99% confidence interval for the mean number of home
fires started by candles each year.

5460 5900 6090 6310 7160 8440 9930

Step 1. Find the mean and standard deviation.
The mean X =7041.4 and
standard deviation s = 1610.3.

Step 2: Find t , in Table F. The confidence level is 99%,
and the degrees of freedom d.f. =6

t oo = 3.707.
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"
Example 7-7: Home Fires by Candles
Step 3: Substitute in the formula.

— S — S
X _ta/Z (ﬁj < u< X +ta/2 (ﬁj
7041.4—3.707(1610'3

J7

7041.4 —2256.2 < 11 < 7041.4+ 2256.2
4785.2 < 11 < 9297.6

One can be 99% confident that the population mean
number of home fires started by candles each year is
between 4785.2 and 9297.6, based on a sample of home
fires occurring over a period of 7 years.

j <1 <7041.4 —3.707(1610'?’)

J7
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When to use the z or t distribution

Yag Ko
I8 o ENT& N l
Ee s, - valuae and Uea £ o valu2e and
< N thelomula.® £ In the romula.*

*H o= 30, he varabk must be pormaly disinbutsd
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" _ _
Finding the Point Estimate

and E from a Confidence
Interval

Point estimate of .
% = (upper confidence limit) + (lower confidence limit)

2

Margin of Error:
£ = (upper confidence limit) — (lower confidence limit)

2
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/.3 Confidence Intervals and
Sample Size for Proportions

P = population proportion
p (read p “hat”) = sample proportion

For a sample proportion,

=2 and §=""2 or G=1-p
N N

where X = number of sample units that possess the
characteristics of interest and n = sample size.

Bluman, Chapter 7, 08/2011
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-3

Example 7-8
Page #3/8
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Example 7-8: Air Conditioned
Households

In a recent survey of 150 households, 54 had central air
conditioning. Find p and @, where p is the proportion of
households that have central air conditioning.

Since X =54 and n = 150,

X 2% 0.36=36%

n 150
1-p=1-0.36 =0.64 =64%

p

@)
|
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Formula for a Specific Confidence
Interval for a Proportion

A ﬁq N\ ﬁq
—Z — < P<P+Z —
p /2 N p p /2 N
when np > 5 and nq > 5.

Rounding Rule: Round off to three decimal places.
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-3

Example 7-9
Page #3/8
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Example 7-9: Male Nurses

A sample of 500 nursing applications included 60 from
men. Find the 90% confidence interval of the true

proportion of men who applied to the nursing program.

b =X /n=60/500=0.12, §=0.88

ﬁ_za/Z %< p< |5+Za/2 %

0.12-1.65 (0'12)(0'88) < p< 0.12+1.65\/(0'12)(0'88)
500 500

0.12—0.024 < p <0.12 +0.024
096 < p <0.144

You can be 90% confident that the percentage of
applicants who are men is between 9.6% and 14.4%.
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-3

Example 7-10
Page #3/79
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" S
Example 7-10: Religious Books

A survey of 1721 people found that 15.9% of individuals
purchase religious books at a Christian bookstore. Find
the 95% confidence interval of the true proportion of

people who purchase their religious books at a Christian

bookstore.
P—2,, s p<pPp+z,, i
0.159)(0.841 0.159)(0.841
0.1591.96\/( )( ){p{0.159+1.96\/( )( )
1721 1721

0.142 < p <0.176

You can say with 95% confidence that the true
percentage is between 14.2% and 17.6%.
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Formula for Minimum Sample Size
Needed for Interval Estimate of a
Population Proportion

If necessary, round up to the next whole number.

Bluman, Chapter 7, 08/2011

52



" J
Chapter 7

Confidence Intervals and
Sample Size

Section 7-3

Example 7-11
Page #380
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Example 7-11: Home Computers

A researcher wishes to estimate, with 95% confidence,
the proportion of people who own a home computer. A
previous study shows that 40% of those interviewed had a
computer at home. The researcher wishes to be accurate
within 2% of the true proportion. Find the minimum sample
Size necessary.

1.96

2 2
n= ;‘ac}[zﬂﬂ ] = (0.40)(0.60)[m] = 2304.96

E

The researcher should interview a sample of at least
2305 people.
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-3

Example 7-12
Page #380
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Example 7-12: Car Phone Ownership

The same researcher wishes to estimate the proportion of
executives who own a car phone. She wants to be 90%
confident and be accurate within 5% of the true
proportion. Find the minimum sample size necessary.

Since there is no prior knowledge of P, statisticians
assign the values P = 0.5 and ( = 0.5. The sample size
obtained by using these values will be large enough to
ensure the specified degree of confidence.

1.65

2 2
n = ﬁ@[zz’z ] = (0'50)(0'50)[W] =272.25

The researcher should ask at least 273 executives.
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" B
7-4 Confidence Intervals for
Variances and Standard Deviations

m \When products that fit together (such as pipes) are
manufactured, it is important to keep the variations of
the diameters of the products as small as possible;
otherwise, they will not fit together properly and will
have to be scrapped.

m |In the manufacture of medicines, the variance and
standard deviation of the medication in the pills play

an important role in making sure patients receive the
proper dosage.

m For these reasons, confidence intervals for variances
and standard deviations are necessary.
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" I
Chi-Square Distributions

m The chi-square distribution must be used to calculate
confidence intervals for variances and standard
deviations.

m The chi-square variable is similar to the t variable in
that its distribution is a family of curves based on the
number of degrees of freedom.

2
m The symbol for chi-square is £ (Greek letter chi,
pronounced “ki”).

m A chi-square variable cannot be negative, and the
distributions are skewed to the right.

Bluman, Chapter 7, 08/2011
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" I
Chi-Square Distributions

m At about 100 degrees of freedom, the chi-square
distribution becomes somewhat symmetric.

m The area under each chi-square distribution is equal to
1.00, or 100%.
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Formula for the Confidence Interval for
a Variance

. 2 . 2
(7 21)3 <o’ < ( 3)3 , df =n-1
/’Kright /’Eleﬁ

Formula for the Confidence Interval for
a Standard Deviation
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Chapter 7

Confidence Intervals and
Sample Size

Section 7-4

Example 7-13
Page #387
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" S
Example 7-13: Using Table G

Find the values for )(rzight and ){,iﬁ for a 90% confidence
iInterval when n = 25.

2 2
Xt X'ight

To find Zrzight, subtract 1 - 0.90 = 0.10. Divide by 2 to
get 0.05. ,
To find Xet, subtract 1 - 0.05 to get 0.95.
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" S
Example 7-13: Using Table G

Use the 0.95 and 0.05 columns and the row
corresponding to 24 d.f. in Table G.

Tahle G
The Chi-square Distribution

Degrees of @
freedom | 0995 0.99 0975 095 0.90 0.10 0.05 0.025  0.01 0.005

1
2

| Y A
24 »{ 13.848 ) >( 36.415 )
I T

2 2
Xiett Xright

The x,,. value is 36.415; the y. value is 13.848.

.a. Arearepresentsthe cumulative area located to
Bluman, Chapter 7, 08/2011 e 63
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= B
Confidence Interval for a Variance

or Standard Deviation
Rounding Rule

When you are computing a confidence interval for a
population variance or standard deviation by using raw
data, round off to one more decimal places than the
number of decimal places in the original data.

When you are computing a confidence interval for a
population variance or standard deviation by using a
sample variance or standard deviation, round off to the
same number of decimal places as given for the sample
variance or standard deviation.
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Example 7-14: Nicotine Content

Find the 95% confidence interval for the variance and
standard deviation of the nicotine content of cigarettes
manufactured if a sample of 20 cigarettes has a standard
deviation of 1.6 milligrams.

To find Zrzight, subtract 1 - 0.95 = 0.05. Divide by 2 to
get 0.025.

To find l.zeﬁ, subtract 1 - 0.025 to get 0.975.

In Table G, the 0.025 and 0.975 columns with the d.f.
19 row yield values of 32.852 and 8.907, respectively.
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Tt ©

Degrees of &
freedom 0595 (.51 0.975 095 .30 .10 s 0.025 il (LINES
1 — — 0.001 0.004 0.016 2.706 3541 5.024 6.635 1.879
2 0.010 0.020 0.051 0,103 0.211 4.605 5.991 T.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 T.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 1.779 9488 11.143 13.277 14.860
3 0412 0.554 0.831 1.145 1610 9.236 11.071 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.445 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18475 20.278
8 1.344 1.646 2.180 2.733 3490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.32% 4.168 14.684 16919 19.023 2].666 23.589
10 2.156 2558 3.247 3.540 4.865 15.987 18.307 20483 23.209 25.188
11 2.603 3.053 3816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3571 4.404 5.2265 6.304 18.549 21.026 23.337 26.217 28.299
13 3365 4.107 5.009 5.892 T.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5229 6.262 7.261 B.547 22,307 24.996 27488 30.578 32.801
16 5.142 5.812 6.908 1.962 9.312 23.542 26.296 28.B45 32,000 34.267
17 5.697 6,408 7.564 B.6T2 10085 24.769 27.587 30.191 33409 35.718
18 6.265 7.015 8.231 9.390  10.865 25.989 28.869 31.526 34,805 37.156
19 6.844 7.633 B.O07  10.117 11.651 27.204 30,144 32.852 36.191 38.582
20 7.434 B.260 9.591 10.851 12443 28412 31410 34,170 37.566 39.997
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Example 7-14: Nicotine Content

(M—zl)s2 <ol < (n—zl)sz
A right Alett
(19)(1.6)° co? < (19)(1.6)°
32.852 8.907
1.5<0° <55

You can be 95% confident that the true variance for the
nicotine content is between 1.5 and 5.5 milligrams.

J1.5 <o <+/5.5
12<0<?2.3

You can be 95% confident that the true standard
deviation is between 1.2 and 2.3 milligrams.
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Example 7-15: Cost of Ski Lift Tickets

Find the 90% confidence interval for the variance and
standard deviation for the price in dollars of an adult
single-day ski lift ticket. The data represent a selected
sample of nationwide ski resorts. Assume the variable is
normally distributed.

59 54 53 52 51
39 49 46 49 48

Using technology, we find the variance of the data is
$2=28.2.

In Table G, the 0.05 and 0.95 columns with the d.f. 9
row yield values of 16.919 and 3.325, respectively.
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Example 7-15: Cost of Ski Lift Tickets

(H—I)Sz <ol < (n—l)sz

/'L’rzight leeﬂ
(9)(282) _ , _(9)(282)
16.919 3.325

15.0< oc* <76.3

You can be 95% confident that the true variance for the
cost of ski lift tickets is between 15.0 and 76.3.

\J15.0 <o <+/76.3

3.8/ <o <8.73

You can be 95% confident that the true standard
deviation is between $3.87 and $8.73.
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