Geometry EOC Released Items - Formula Sheet				
End of Course Mathematics Reference Sheet				
Parall	logram	Trapezoid	$A=\frac{h\left(b_{1}+b_{2}\right)}{2}$	Arc and Sector $\begin{array}{r} M^{\circ} \\ r \end{array}$ $\begin{aligned} & \text { Arc Length }=\left(\frac{M}{360}\right) \cdot 2 \pi r \\ & \text { Sector Area }=\left(\frac{M}{360}\right) \cdot \pi r^{2} \end{aligned}$
Triang		Rectangle	$\begin{gathered} P=2 l+2 w \\ A=l w \end{gathered}$	$30^{\circ}-60^{\circ}-90^{\circ}$
Circles$\begin{aligned} & C=2 \pi r \\ & C=\pi d \\ & A=\pi r^{2} \\ & \pi \approx 3.14 \end{aligned}$		Pythagorean Theore	$a^{2}+b^{2}=c^{2}$	$45^{\circ}-45^{\circ}-90^{\circ}$
		$\begin{gathered} B=\begin{array}{c} \text { area of base } \\ (\text { shaded }) \end{array} \\ \text { Volume }=\frac{B h}{3} \end{gathered}$		Trigonometric Ratios
Cylinder$\begin{gathered} \text { Volume }=\pi r^{2} h \\ \text { Surface Area }=2 \pi r h+2 \pi r^{2} \end{gathered}$				Sphere $\begin{gathered} \text { Volume }=\frac{4 \pi r^{3}}{3} \\ \text { Surface Area }=4 \pi r^{2} \end{gathered}$
	Area of an equilateral triangle		$A=\frac{s^{2} \sqrt{3}}{4} \quad \mathrm{~s}=$ length of a side	
	Distance		rate - time	
	Interest		principal -rate -time in years	
	Sum of the angles of a polygon having n sides		$(n-2) 180^{\circ}$	
	Distance between points on a coordinate plane		$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	
	Midpoint		$\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$	
	Slope of a nonvertical line (where $x^{2} \neq x^{1}$)		$m=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)$	
	Slope Intercept (where m = slope, $\mathrm{b}=$ intercept)		$y=m x+b$	
	Last term of an arithmetic series Last term of a geometric series (where $\mathrm{n} \geq 1$)		$\begin{aligned} & a_{n}=a+(n-1) d \\ & a_{n}=a r^{2}-1 \end{aligned}$	
	Quadratic Formula		$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	
	Area of a square		$A=s^{2}$	
	Volume of a cube		$V=s^{3}$	
	Area of a regular polygon		$A=\frac{1}{2} a p \quad \mathrm{a}=$ apothem, $\mathrm{p}=$ perimeter	

Lateral Area, Surface Area \& Volume

$\boldsymbol{P}=$ perimeter of base
$\boldsymbol{B}=$ area of base
$\boldsymbol{l}=$ slant height

Rectangle: $A=b h$
Circle: $A=\pi r^{2}$
Triangle: $A=\frac{b h}{2}$
Trapezoid: $A=\frac{h\left(b_{1}+b_{2}\right)}{2}$

Volume of a Prism: $\quad V=B H$
Volume of a Cylinder: $\quad V=\pi r^{2} H$
Volume of a Cone: $V=\frac{\pi r^{2} H}{3}$
Volume of a Pyramid: $\quad V=\frac{B H}{3}$
Volume of a Sphere: $\quad V=\frac{4 \pi r^{3}}{3}$

Lateral Area of a Prism: $\quad L A=P H$
Surface Area of a Prism: $\quad S A=P H+2 B$

Lateral Area of a Cylinder: $\quad L A=2 \pi r H$ Surface Area of a Cylinder: $\quad S A=2 \pi r H+2 \pi r^{2}$

Lateral Area of a Pyramid: $\quad L A=\frac{P l}{2}$
Surface Area of a Pyramid: $\quad S A=\frac{P l}{2}+B$

Lateral Area of a Cone: $\quad L A=\pi r l$
Surface Area of a Cone: $\quad S A=\pi r l+\pi r^{2}$

Surface Area of a Sphere: $\quad S A=4 \pi r^{2}$

Circles

Secant \& Tangent Angles

$$
\angle 1=\frac{1}{2} a
$$

Secant \& Tangent Segment Lengths

$a b=c d$

